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Abstract
It is shown that the Ising model on a two-dimensional lattice with pentagonal
tiling and nearest-neighbour interactions is equivalent to the Ising model on the
Union-Jack lattice with nearest- and second nearest-neighbour non-crossing
interactions. Besides the critical temperature, exact expressions are obtained
for the spontaneous magnetization for both types of lattice sites.

PACS number: 05.50.+q

The exact solution of the planar Ising model on the square lattice with nearest-neighbour
interactions obtained by Onsager almost six decades ago has a prominent place in the history
of statistical mechanics (Lieb 1997). The following years witnessed new exact results for more
complex lattices (Syozi 1972, Baxter 1982), including interactions with further neighbours
(Vaks et al 1965) or triplet interactions (Baxter and Wu 1973a, 1973b) among other extensions.
Nevertheless it is still of interest to find the exact critical point and other statistical properties
for specific lattices with particular interactions. Recently, Oitmaa and Keppert (2002) obtained
exact expressions for the critical temperature and the magnetization for the 4–6 lattice which
represents a particular type of tiling the plane with squares and hexagons. A guide to the
literature on phase transitions and critical phenomena was prepared by Tobochnik (2001).

In the following we consider an Ising model on a planar lattice (see figure 1) where the
tiling is achieved with one type of polygons, namely pentagons, and which appears not to
have been dealt with in the literature. The lattice may be viewed as a pattern with chessboard
ordering with the elementary motif rotated by 90◦ in the neighbouring square plaquettes.
There are two types of lattice sites with different coordination numbers equal to 3 and 4. First
we derive an exact relationship from which the critical temperature can be computed and then
obtain the order parameter for both types of lattice sites. The method used in the analysis
is based on decoration–iteration and star–triangle transformations commonly used in Ising
model studies (Fisher 1959, Syozi 1972).

To introduce the notation let us consider the elementary square plaquette depicted in
figure 2. The letters a, b, c, d are used for the spins located at the fourfold coordinated sites in
the corners, while s1,2 represent the internal spins with threefold coordination. There are two
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Figure 1. Pentagonal lattice of dark circles with interaction between nearest-neighbour sites. The
dashed lines indicate the underlying square structure.
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Figure 2. An elementary plaquette (a) and its subsequent transformations.

distinct interaction parameters, J and J ′, coupling particular nearest-neighbour pairs of spins
(figure 2(a)). The contribution to the Hamiltonian from an elementary plaquette is given by

H = −J [s1(a + b) + s2(c + d)] − J ′s1s2. (1)

As a first step in the transformation an additional spin σ is introduced at each internal
bond (figure 2(b)) using the identity

eK ′s1s2 = A
∑

σ=±1

eQσ(s1+s2) = 2A coshQ(s1 + s2) (2)

which is valid for all possible combinations of s1,2 = ±1. Here K ′ = βJ ′, β = 1/kBT ,

A = e−K ′
/2 and Q, the effective interaction between the spins σ and s1,2, is defined by

cosh 2Q = e2K ′
. (3)

The validity of this relationship is restricted to the case K ′ > 0.
The next step is to perform the summation in the partition function over the internal

s1,2-spins. This is the well-known star–triangle transformation which when applied as a
result gives the effective interactions dipicted in figure 2(c). The magnitudes of the effective
interactions follow from the expression∑

s1=±1

e[Qσ+K(a+b)]s1 = 2cosh[Qσ + K(a + b)] = BeK1σ (a+b)+K2ab (4)

where K = βJ, σ = ±1, a = ±1, b = ±1 and

e4K1 = cosh(Q + 2K)

cosh(Q − 2K)
(5)
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Figure 3. The reduced critical temperature kBTc/J versus J/
√

J 2 + J ′2.

e4K2 = cosh(Q + 2K)cosh(Q − 2K)

cosh2Q
= cosh 2Q + cosh 4K

cosh 2Q + 1
. (6)

The prefactor B4 = 16 cosh2Q cosh(Q + 2K)cosh(Q − 2K) does not enter any of the
subsequent expressions.

As a result of the transformations and the structure of the initial pentagonal lattice, we end
up with an Ising model on the Union-Jack lattice with isotropic nearest-neighbour interactions
defined by K1 and non-crossing diagonal interactions between the second nearest neighbours
given by K2. The Ising model on the Union-Jack lattice has been solved (Vaks et al 1965) and
additional exact results were obtained by others (Choy and Baxter 1987). Using their results,
the critical point of our model can be obtained from the equation

k = 1 (7)

where

k = 4x2y2(1 + x2)2

(1 − x4)2 + 4x4(1 − y2)2
(8)

and

x = e−2K1 y = e−2K2 . (9)

Furthermore, the magnetization M0 = 〈a〉 of the corner spins is described by

M0 = (1 − k2)1/8. (10)

The dependence of the critical temperature as a function of the relative strength of the coupling
parameters is illustrated in figure 3.

To proceed with the evaluation of Ms , two identities will be useful,

tanh[Qσ + K(a + b)] = Aσ + B(a + b) + Cabσ (11)

and

tanh[K1(a + b + c + d)] = D(a + b + c + d) + E(abc + bcd + cda + dab). (12)

The coefficients in (11) and (12) are uniquely determined from the equations obtained by
substitution of all possible combinations of σ, a, b, c, d = ±1. They yield

A = 1
4 [tanh(Q + 2K) + tanh(Q − 2K) + 2 tanhQ]

B = 1
4 [tanh(Q + 2K) − tanh(Q − 2K)]

C = 1
4 [tanh(Q + 2K) + tanh(Q − 2K) − 2 tanhQ]

(13)

D = tanh 4K1 + 2 tanh 2K1

8
E = tanh 4K1 − 2 tanh 2K1

8
. (14)
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Table 1. Magnetization M0 and Ms for J ′/
√

J 2 + J ′2 = 0.1 and kBTc/J = 1.377 454 026.

T /Tc 0 0.5 0.8 0.95 0.99 1
M0(T ) 1 0.9998 0.9780 0.8711 0.7256 0
Ms(T ) 1 0.9972 0.9554 0.8393 0.6968 0

Table 2. Magnetization M0 and Ms for J ′/
√

J 2 + J ′2 = 1/
√

2 and kBTc/J = 1.799 166 700.

T /Tc 0 0.5 0.8 0.95 0.99 1
M0(T ) 1 0.9996 0.9726 0.8609 0.7140 0
Ms(T ) 1 0.9986 0.9696 0.8644 0.7195 0

Returning to the evaluation of the magnetization of the internal spins si, i = 1, 2, and
using (11), we obtain an equation that relates Ms = 〈s1〉 to M0 = 〈a〉,Mσ = 〈σ 〉 and the
three-spin correlation 〈abσ 〉,

〈s1〉 = 〈tanh[Qσ + K(a + b)]〉 = A〈σ 〉 + 2B〈a〉 + C〈abσ 〉. (15)

The magnetization of the internal spins on the Union-Jack lattice Mσ is related (Choy and
Baxter 1987) to the three-spin correlation 〈abc〉 involving the corner spins from the elementary
plaquette. The relationship is

〈σ 〉 = Mσ =
(

tanh 4K1

2
+ tanh 2K1

)
〈a〉 +

(
tanh 4K1

2
− tanh 2K1

)
〈abc〉 (16)

where

〈abc〉 = F(x, y)

G(x, y)
〈a〉 (17)

and

F(x, y) = (x4 + 1)2(x2 − 1)2 + 2x2y2(x4 + 1)(x2 − 1)2 + 2(x2 + 1)2(x4 + 1)2

− 2x2y2(x2 + 1)4 − 2�(x, y)(x2 + 1)2(x4 + 1) (18)

G(x, y) = [(x4 + 1)2 − 4x4y2](x2 − 1)2 (19)

�(x, y) = [(1 − x4)2 + 4x4(1 − y2)2]1/2. (20)

The evaluation of the remaining three-spin correlation entering (15) is straightforward.
Using identity (12) and the symmetry of the correlation functions

〈abc〉 = 〈bcd〉 = 〈cda〉 = 〈dac〉 (21)

we find

〈abσ 〉 = 〈ab tanh[K1(a + b + c + d)]〉 = tanh 4K1

2
(〈a〉 + 〈abc〉). (22)

Finally, the explicit expression for the mean spontaneous magnetization of the threefold
coordinated sites on the pentagonal lattice is

〈s1〉 =
[
(A + C)tanh 4K1

2
+ A tanh 2K1 + 2B

+

(
(A + C)tanh 4K1

2
− A tanh 2K1

)
F(x, y)

G(x, y)

]
M0. (23)

Instead of a graphic presentation for the magnetization M0(T ) and Ms(T ) we
provide tables 1 and 2 with values of the magnetization for several reduced temperatures.
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The differences between the values of the magnetization between sites with threefold and
fourfold coordination are very small to be perceptible on a graph. As expected, the sites with
lower coordination have weaker magnetization.

In conclusion, we have demonstrated that the Ising model on a pentagonal lattice with
nearest-neighbour interactions characterized by two parameters is equivalent to the Ising model
on the Union-Jack lattice. Exact expressions were obtained which permit calculation of the
critical temperature and the magnetization of both types of lattice sites. The expressions
correctly reproduce the known results in two limiting cases: J ′ → ∞ when the pentagonal
lattice is reduced to the square lattice, and J ′ → 0 when it is reduced to a decorated square
lattice. As expected the model falls in the same universality class with the nearest-neighbour
Ising model on the square lattice. One may expect that the more general case of a pentagonal
lattice with greater number of nearest-neighbour interaction parameters will also be exactly
solvable because the necessary ingredients in the form of exact results for the anisotropic
Union-Jack lattice are available in the literature (Baxter and Choy 1989, Lin and Wu 1989).
Another possibility is to have as an elementary plaquette a square with a different motif.
For example, if both internal spins in all plaquettes of the considered pentagonal lattice are
substituted with triangles of spins connected between themselves at one identical site and
additionally connected with their remaining sites with a pair of neighbouring corners of the
underlying square lattice, we obtain a bowtie motif. Ordering the squares in the same manner
as we did in figure 1, we have a lattice with triangles and septagons. Applying the star–triangle
and dedecoration transformations, the Ising model on such a lattice can be exactly mapped
onto the pentagonal lattice considered in this paper.
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